Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

Paper #:
  • 2012-32-0031

Published:
  • 2012-10-23
DOI:
  • 10.4271/2012-32-0031
Citation:
Kobashi, Y., Maekawa, H., Kato, S., and Senda, J., "Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray," SAE Int. J. Fuels Lubr. 5(3):1404-1413, 2012, doi:10.4271/2012-32-0031.
Pages:
10
Abstract:
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency. Numerical investigation into the pressure rise rate reduction mechanism was also performed by use of a multi-component fuel model developed by the authors. The calculated result showed that the pressure rise rate was reduced due to the difference in the vapor concentrations between two components which have difference reactivity.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2010-07-07
Technical Paper / Journal Article
2010-09-28
Technical Paper / Journal Article
2010-09-28
Training / Education
2003-01-22
Article
2016-09-06