Dynamic Simulation under Intermediate Strain Rates of Mechanical Components Made of an Elastomeric Matrix and a Metal Reinforcement

Paper #:
  • 2013-01-0169

Published:
  • 2013-04-08
Citation:
Ramirez, A. and Munoz, L., "Dynamic Simulation under Intermediate Strain Rates of Mechanical Components Made of an Elastomeric Matrix and a Metal Reinforcement," SAE Technical Paper 2013-01-0169, 2013, https://doi.org/10.4271/2013-01-0169.
Pages:
12
Abstract:
This work studies the dynamic simulation of mechanical components under intermediate strain rates. The study is centered on components composed of an elastomeric material and a metal reinforcement. Two different constitutive models were proposed to simulate the elastomeric material dynamic behavior. The proposed models were the Maxwell and the Cowper & Symonds models. For the components' simulation, the material characteristics were obtained through a multivariable identification process based on the experimental data acquired from a dynamic material analysis (DMA). For the generalized Maxwell model the system frequency response was analyzed, and for the Cowper & Symonds model a finite element analysis was performed. It was found that the Cowper & Symonds model implementation by finite element analysis allows a good fit of the material properties but has a high computational cost. On the other hand, the Maxwell model implementation by frequency representation consists on a reduced order model with low computational cost to perform the simulation of simple mechanical components.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2017-06-15
Training / Education
2018-02-05
Book
2002-04-15
Technical Paper / Journal Article
2010-10-25
Technical Paper / Journal Article
2010-10-19