Browse Publications Technical Papers 2013-01-0496
2013-04-08

A Technical and Financial Analysis of Potentially Near-Zero Greenhouse Gas Emission Passenger Vehicles 2013-01-0496

This paper presents a technical and financial analysis of several, potentially near-zero greenhouse gas emission passenger vehicles for Australian driving conditions. Conventional, series hybrid, plug-in hybrid (PHEV) and fully electric (BEV) vehicles of class B and class E sizes are considered, with their propulsive energy assumed to originate from a source that is free of net greenhouse gas emissions.
Extensions to the vehicle models developed by the authors in our previous works [1, 2, 3] are first developed. These enable estimation of the size of each major component in each powertrain, and therefore the total, in-service energy consumption and in-service greenhouse gas emissions. The component sizing also allows estimation of the each vehicle's purchase price, its embodied energy and its embodied greenhouse gas emissions, the latter assuming scenarios for both the current and a future, low emission intensity of Australian manufacturing.
The ability of increasingly electric powertrains to reduce in-service energy consumption and emissions, with correspondingly higher up-front price and higher embodied emissions, are then evaluated. Overall, the results suggest that full vehicle electrification is not the clear end-point in the evolution of the passenger vehicle powertrain, since PHEVs/BEVs may perform worse environmentally, financially and in utility than alternatives. A technologically neutral approach to the progressive reduction of passenger vehicle lifecycle emissions therefore appears appropriate, with the hydrogen economy one potential outcome and the continued use of the internal combustion engine appearing likely. Such an approach is thought to minimise the risk of perverse incentives, both today and in future, as this paper suggests could occur if fully electric vehicles are given preferential treatment.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Vehicle Cycle Analysis Comparison of Battery Electric Vehicle and Conventional Vehicle in China

2013-01-2581

View Details

TECHNICAL PAPER

Active Limitation of Tire Wear and Emissions for Electrified Vehicles

2021-01-0328

View Details

JOURNAL ARTICLE

A Study on Optimal Powertrain Sizing of Plugin Hybrid Vehicles for Minimizing Criteria Emissions Associated with Cold Starts

2018-01-0406

View Details

X