Browse Publications Technical Papers 2013-01-0567
2013-04-08

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes 2013-01-0567

High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed. The results were also compared with high-resolution particle image velocimetry (PIV) measurements of the velocity field previously made in the same engine. The kinetic and scalar energy spectra were found to agree well, but the dissipation spectra differed significantly at high wavenumber due to the insufficient spatial resolution of the PIV data. The velocity data allow a direct comparison of the relative role of turbulence intensity, integral length scale, and viscosity on the Batchelor scale evolution. The reduction in turbulence intensity and integral length scale were found to nearly balance, allowing the reduction in kinematic viscosity at TDC to have a significant effect on the Batchelor scale behavior. The quantitative comparison between the Batchelor scale determined from the scalar data and the Kolmogorov scale determined from the velocity data was good, differing by less than 30% despite the independent estimation methods. But, some scaling relations using the velocity data were found to incorrectly predict the magnitude of the changes observed in the Batchelor scale.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Multi-Species Laser-Based Imaging Measurements in a Diesel Spray

2004-01-1917

View Details

TECHNICAL PAPER

Large Eddy Simulation of Non-Evaporative and Evaporative Diesel Spray in Constant Volume Vessel by Use of KIVALES

2006-01-3334

View Details

TECHNICAL PAPER

Numerical Simulation of Transient Liquid Fuel Sprays Vaporization Under Engine-Like Conditions Using Diffusion Limit and Well Mixed Vaporization Models

960877

View Details

X