Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

Paper #:
  • 2013-01-0608

Published:
  • 2013-04-08
DOI:
  • 10.4271/2013-01-0608
Citation:
George, R., Worswick, M., Detwiler, D., and Kang, J., "Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation," SAE Int. J. Mater. Manf. 6(2):157-162, 2013, doi:10.4271/2013-01-0608.
Pages:
6
Abstract:
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite).Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures. A strain-rate-sensitive constitutive model is used to model the as-quenched behavior of the hot-formed components with tailored microstructures.With an impact mass of 300 kg and total energy of 1.7 kJ, the measured maximum impactor displacement of the tailored components was approximately 9% (7.6 mm) greater than the fully hardened components. The measured peak impact load of the tailored components was approximately 24% (9.3 kN) lower than the fully hardened components. The numerical impact models are able to capture the force-displacement and deformation trends observed in the experiments.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2010-09-28
Article
2016-09-06
Technical Paper / Journal Article
2010-10-25
Article
2016-08-24