Browse Publications Technical Papers 2013-01-0645
2013-04-08

Use of Finite Element Simulation for Modeling Vertically Aligned Carbon Nanotube Arrays Based on Structural Mechanics Principles 2013-01-0645

Carbon nanomaterials such as vertically aligned carbon nanotubes arrays are emerging new materials that have demonstrated superior mechanical, thermal, and electrical properties. The carbon nanomaterials have the huge potential for a wide range of vehicular applications, including lightweight and multifunctional composites, high-efficiency batteries and ultracapacitors, durable thermal coatings, etc. In order to design the carbon nanomaterials for various applications, it is very important to develop effective computational methods to model such materials and structures. The present work presents a structural mechanics approach to effectively model the mechanical behavior of vertically aligned carbon nanotube arrays. The carbon nanotube may be viewed as a geometrical space frame structure with primary bonds between any two neighboring atoms and thus can be modeled using three-dimensional beam elements. Effects of tube geometric factors (wall thickness and tube diameter) and material properties (Poisson's ratio) on mechanical properties of the nanotube structure were examined. Results show that the Young's modulus is inversely proportional to the nanotube wall thickness and Poisson's ratio. On the other hand, the Young's modulus and shear modulus exhibit nonlinear relationships with the nanotube diameter, i.e., both moduli increase rapidly at smaller diameters but become stabilized at larger diameters. Compression test conducted on VACNT array shows linear behavior for the values of applied strains in the present case.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of the Intelligent Power Unit for the V6 Hybrid Midsize Sedan

2005-01-0275

View Details

TECHNICAL PAPER

Development of a Manufacturing Strategy for Moderate Volume Production of a Composite Vehicle Structure

982400

View Details

TECHNICAL PAPER

An Adhesive Bonded Polymer-Metal Hybrid Hood Development: Design Engineering and Prototyping

2016-01-0350

View Details

X