Browse Publications Technical Papers 2013-01-0787
2013-04-08

Determining When an Object Enters the Headlight Beam Pattern of a Vehicle 2013-01-0787

A method for evaluating a driver's response in a nighttime crash scenario is offered. A pedestrian can be said to be within the headlight beam when the line representing the shape of a headlight beam equals the pedestrian approach vector. This method is based upon headlight beam mapping and the illumination necessary for drivers to recognize non-illuminated objects on an unlit road at night. The most notable information gained through this research is to be able to correlate headlight illumination with driver response distances. From 25 nighttime driver response distance experiments, information was gathered from many of the original authors. This information includes position left or right, headlight type, lighting, movement of the object or pedestrian, and the position (standing, slumped or laying). Also recorded were methodology variable such as experiment type, experiment type (closed course or road), whether the observer was driving and if the observer was asked to be certain of the target, or to respond as soon as possible. The headlight mapping and the experimental results allowed for the calculation of the beam size necessary before participants responded to pedestrians and objects of various shapes (black to white to retroreflective). Equations are given for various applicable beam patterns. The distance at which the headlight beam equation equals the pedestrian or object vehicle-fixed approach vector will be the distance at which the pedestrian or object entered the headlight beam. Secondary analyses are suggested as a means of addressing other variables that influence nighttime driver responses. The factors that influence a driver's ability to recognize an object at night and the limitations of these models will be addressed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Modeling Passenger Vehicle Acceleration Profiles from Naturalistic Observations and Driver Testing at Two-way-stop Controlled Intersections

2010-01-0062

View Details

TECHNICAL PAPER

Pedestrian Impact on Low Friction Surface

2014-01-0470

View Details

TECHNICAL PAPER

Development and Evaluation of Driver Response Time Predictors Based upon Meta Analysis

2003-01-0885

View Details

X