The Effect of Charge Cooling on the RON of Ethanol/Gasoline Blends

Paper #:
  • 2013-01-0886

Published:
  • 2013-04-08
Citation:
Foong, T., Morganti, K., Brear, M., da Silva, G. et al., "The Effect of Charge Cooling on the RON of Ethanol/Gasoline Blends," SAE Int. J. Fuels Lubr. 6(1):34-43, 2013, https://doi.org/10.4271/2013-01-0886.
Pages:
10
Abstract:
This paper examines the effect of charge cooling on the Research Octane Number (RON) of ethanol/gasoline blends. While gasoline is fully vaporized prior to entry into the engine in a standard RON test, significant charge cooling is observed for blends with high ethanol content, with the presence of a near-saturated and potentially two-phase air-fuel mixture during induction. Thus, the relative significance of the charge cooling and the autoignition chemistry cannot be determined from the standard RON test.In order to better delineate the effects of charge cooling and autoignition chemistry, a so-called ‘modified RON’ test is therefore devised in which the temperature of the air-fuel mixture entering the engine is fixed and representative of that observed for primary reference fuels (PRFs). Thermodynamic modeling of this modified RON test suggests the mixture is always fully vaporized prior to compression, and that the modified RON test maintains much more constant temperatures during compression, regardless of the enthalpy of vaporization. The modified RON test thus appears to be a more practical means of examining the significance of autoignition chemistry of various fuels, particularly gasoline blends with significant alcohol content.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-12-11
Article
2017-03-13
Training / Education
2018-05-07
Training / Education
1999-09-27