Browse Publications Technical Papers 2013-01-0911
2013-04-08

Exploring a Gasoline Compression Ignition (GCI) Engine Concept 2013-01-0911

Future vehicles will increasingly be required to improve their efficiency, reduce both regulated and CO₂ emissions, and maintain acceptable levels of driving, safety, and noise performance. To achieve this high level of performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. These capabilities offer the potential to design future vehicles to operate on the most widely available and GHG-reducing fuels.
In previous studies, fuel flexibility has been demonstrated on a compression ignition bench engine and vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can operate routinely on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels.
This paper describes initial engineering and experimental steps to assess this potential. Using an advanced diesel bench engine having a higher compression ratio, optimized valve timing, and flexible fuel injection, the engine could be operated on a European market gasoline over full to medium part loads. The combustion was found to be highly sensitive to EGR rates, however, and the simultaneous optimization of all regulated emissions and combustion noise was a considerable challenge. An advanced glow plug was tested to improve low load performance but did not extend the engine operating range as much as expected.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

An Investigation of High Load (Compression Ignition) Operation of the “Naphtha Engine” - a Combustion Strategy for Low Well-to-Wheel CO2 Emissions

2008-01-1599

View Details

JOURNAL ARTICLE

Dynamic Burn Rate Modeling for the 1D Simulation of a GDI Engine in Homogeneous and Stratified Operation Mode

2008-01-2393

View Details

TECHNICAL PAPER

Investigations of the Multiple Fuel Injection and Atomization with the Use of Two Outward-Opening Injectors

2014-01-1402

View Details

X