Boost System Development for Gasoline Direct-Injection Compression-Ignition (GDCI)

Paper #:
  • 2013-01-0928

Published:
  • 2013-04-08
DOI:
  • 10.4271/2013-01-0928
Citation:
Hoyer, K., Sellnau, M., Sinnamon, J., and Husted, H., "Boost System Development for Gasoline Direct-Injection Compression-Ignition (GDCI)," SAE Int. J. Engines 6(2):815-826, 2013, doi:10.4271/2013-01-0928.
Pages:
12
Abstract:
Intake boosting is an important method to improve fuel economy of internal combustion engines. Engines can be down-sized, down-speeded, and up-loaded to reduce friction losses, parasitic losses, and pumping losses, and operate at speed-load conditions that are thermodynamically more efficient. Low-temperature combustion engines (LTE) also benefit from down-sizing, down-speeding, and up-loading, but these engines exhibit very low exhaust enthalpy to drive conventional turbochargers. This paper describes modeling, evaluation, and selection of an efficient boost system for a 1.8L four-cylinder Gasoline Direct-Injection Compression-Ignition (GDCI) engine.After a preliminary concept selection phase the model was used to develop the boost system parameters to achieve full-load and part-load engine operation objectives. The simulation was used to demonstrate that a practical boost system can provide the boost necessary at reasonable brake efficiency levels over the entire engine operating range. A comprehensive simulation based calibration was performed to determine the most efficient steady operation settings. Also a step change in speed/load engine operation was simulated to demonstrate the system transient response.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2017-10-03
Training / Education
1999-09-27
Article
2016-09-06
Training / Education
2009-12-15
Training / Education
2003-01-22