Browse Publications Technical Papers 2013-01-0932
2013-04-08

Downspeeding a Light Duty Diesel Passenger Car with a Combined Supercharger and Turbocharger Boosting System to Improve Vehicle Drive Cycle Fuel Economy 2013-01-0932

Downsizing and downspeeding have become accepted strategies to reduce fuel consumption and criteria pollutants for automotive engines. Engine boosting is required to increase specific power density in order to retain acceptable vehicle performance. Single-stage boosting has been sufficient for previous requirements, but as customers and governments mandate lower fuel consumption and reduced emissions, two-stage boosting will be required for downsized and downsped engines in order to maintain performance feel for common class B, C, and D vehicles.
A 1.6L-I4 diesel engine model was created, and three different two-stage boosting systems were explored through engine and vehicle level simulation to reflect the industry's current view of the limit of downsizing without degrading combustion efficiency with cylinder volumes below 400 cm₃. Some current engines are already at this size, so downspeeding will become much more important for reducing fuel consumption in the future. Twin-turbocharger, supercharger-turbocharger, and turbocharger-supercharger boosting systems were explored using GT-Power and GT-Drive simulation to demonstrate each boosting system's impact on BSFC and drive cycle fuel economy over the NEDC and ARTEMIS (urban) cycle. Transmission shift points were altered to downspeed each configuration to match equivalent vehicle performance while maintaining the same transmission and final drive ratios to not impact vehicle creep speed and gradeability. The twin sequential turbocharged engine had slightly lower full load BSFC values than the supercharged engines, but this slight penalty was easily overcome through vehicle downspeeding by matching performance of the twin turbo vehicle. Vehicle fuel consumption for the supercharger-based boosting systems was 8-10% lower over the NEDC and 12-14% lower over the ARTEMIS (urban) cycle when compared to a twin sequential turbocharger boosting system.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Boost System Development for Gasoline Direct-Injection Compression-Ignition (GDCI)

2013-01-0928

View Details

JOURNAL ARTICLE

Analysis of the Performance of a Turbocharged S.I. Engine under Transient Operating Conditions by Means of Fast Running Models

2013-01-1115

View Details

TECHNICAL PAPER

Part-Load Operation of Gasoline Direct-Injection Compression Ignition (GDCI) Engine

2013-01-0272

View Details

X