Browse Publications Technical Papers 2013-01-0991
2013-04-08

Rule Optimized Fuzzy Logic Controller for Full Vehicle Semi-Active Suspension 2013-01-0991

This paper presents a new and effective control concept for semi-active suspension systems. The proposed controller uses a Fuzzy Logic scheme which offers new opportunities in the improvement of vehicle ride performance. The Fuzzy Logic scheme tunes the controller to treat the conflict requirements of ride comfort and road holding parameters within a specified range of the suspension deflection. An eleven degree of freedom full vehicle ride dynamics model is constructed and validated through laboratory tests performed on a hydraulic four-poster shaker. A new optimization process for obtaining the optimum Fuzzy Logic membership functions and the optimum rule-base of the proposed semi-active suspension controller is proposed. Discrete optimization has been performed with a Genetic Algorithm (GA) to find the global optima of the cost function which considers the ride comfort and road holding performance of the full vehicle. The proposed Fuzzy Logic semi-active controller is compared to the optimum Linear Quadratic Regulator (LQR) semi-active controller and the optimum passive suspension system in terms of ride comfort and road holding. The results showed that the proposed semi-active suspension system controller provides significant improvements in both ride comfort and road holding performance of the vehicle.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Virtual Multi-ECU High Fidelity Automotive System Simulation

2016-01-0013

View Details

TECHNICAL PAPER

Semi-Active Twin-accumulator Suspension System

2002-01-0985

View Details

JOURNAL ARTICLE

Development of a Semi-Active Suspension Controller Using Adaptive-Fuzzy with Kalman Filter

2011-01-0431

View Details

X