Testing, Modelling and Analysis of a Linear Magnetorheological Fluid Damper under Sinusoidal Conditions

Paper #:
  • 2013-01-0996

Published:
  • 2013-04-08
DOI:
  • 10.4271/2013-01-0996
Citation:
Metered, H., Mostafa, S., El-Demerdash, S., Hammad, N. et al., "Testing, Modelling and Analysis of a Linear Magnetorheological Fluid Damper under Sinusoidal Conditions," SAE Technical Paper 2013-01-0996, 2013, doi:10.4271/2013-01-0996.
Pages:
8
Abstract:
Magnetorheological (MR) fluid dampers are the most promising devices for practical vibration control applications because they have many advantages such as mechanical simplicity, high dynamic range, low power requirements, large force capacity and robustness.This paper aims to study the dynamical behavior of a linear MR fluid damper through experiments. Also, an efficient and simple model is developed to identify the damping force as a function of the damper velocity, acceleration and applied voltage to the magnetic coil, without using any complicated mathematical or differential equations, which will be very useful for large and complicated applications. The identified parameters of the MR damper are obtained using trial-and-error methodology. The validation is done using the dynamical behaviour of MR damper for both experimentation and simulation, by solving the modified Bouc-Wen (M B-W) model that can predict the dynamical behavior of MR dampers accurately. In the experimental stage, the data are generated through dynamic tests with the damper mounted on a tensile testing machine. Validation data sets representing a wide range of working conditions of the damper, under sinusoidal loading, clearly show that the use of the proposed model can reliably represent the dynamical behaviour of MR dampers as a function of known velocity, acceleration and input voltage.Furthermore, a useful parameter that can be employed to characterize the MR damper is the amount of energy that dissipates in one cycle of MR damper operation. The energy dissipation of the proposed MR damper model and the modified Bouc-Wen model are analyzed and compared to show the effectiveness of the proposed model.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-09-06
Article
2016-08-24
Standard
2008-01-24
Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2011-04-12