The Effects of CO, H 2 , and C 3 H 6 on the SCR Reactions of an Fe Zeolite SCR Catalyst

Paper #:
  • 2013-01-1062

  • 2013-04-08
Smith, M., Depcik, C., Hoard, J., Bohac, S. et al., "The Effects of CO, H2, and C3H6 on the SCR Reactions of an Fe Zeolite SCR Catalyst," SAE Technical Paper 2013-01-1062, 2013,
Selective Catalytic Reduction (SCR) catalysts used in Lean NOx Trap (LNT) - SCR exhaust aftertreatment systems typically encounter alternating oxidizing and reducing environments. Reducing conditions occur when diesel fuel is injected upstream of a reformer catalyst, generating high concentrations of hydrogen (H₂), carbon monoxide (CO), and hydrocarbons to deNOx the LNT. In this study, the functionality of an iron (Fe) zeolite SCR catalyst is explored with a bench top reactor during steady-state and cyclic transient SCR operation.Experiments to characterize the effect of an LNT deNOx event on SCR operation show that adding H₂ or CO only slightly changes SCR behavior with the primary contribution being an enhancement of nitrogen dioxide (NO₂) decomposition into nitric oxide (NO). Exposure of the catalyst to C₃H₆ (a surrogate for an actual exhaust HC mixture) leads to a significant decrease in NOx reduction capabilities of the catalyst. A degradation mechanism is proposed to account for the decrease in NOx conversion efficiency, highlighted by reactions between NO₂ and C₃H₆ to make NO at a rate of similar order of magnitude as the Fast SCR reaction. This inhibits SCR reactions when the NO:NOx ratio favors NO, but can increase NOx conversion when the NO:NOx ratio favors NO₂.Ammonia (NH₃) storage is only marginally affected by the presence of H₂, CO, or C₃H₆; but significant amounts of C₃H₆ can be stored on the catalyst. Further observation reveals that the oxidation effects of C₃H₆ are non-negligible and C₃H₆ strongly influences the oxidation of NH₃. The degradation mechanism includes seven proposed reactions to model the experimental results of adding H₂, CO, and C₃H₆ to the SCR feed gas during steady-state and transient operation.
SAE MOBILUS Subscriber? You may already have access.
Members save up to 42% off list price.
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
Technical Paper / Journal Article