Li-Ion Battery SoC Estimation Using a Bayesian Tracker

Paper #:
  • 2013-01-1530

Published:
  • 2013-04-08
Citation:
Arasaratnam, I., Ahmed, R., El-Sayed, M., Tjong, J. et al., "Li-Ion Battery SoC Estimation Using a Bayesian Tracker," SAE Technical Paper 2013-01-1530, 2013, https://doi.org/10.4271/2013-01-1530.
Pages:
18
Abstract:
Hybrid, plug-in hybrid, and electric vehicles have enthusiastically embraced rechargeable Li-ion batteries as their primary/supplemental power source of choice. Because the state of charge (SoC) of a battery indicates available remaining energy, the battery management system of these vehicles must estimate the SoC accurately. To estimate the SoC of Li-ion batteries, we derive a normalized state-space model based on Li-ion electrochemistry and apply a Bayesian algorithm. The Bayesian algorithm is obtained by modifying Potter's squareroot filter and named the Potter SoC tracker (PST) in this paper. We test the PST in challenging test cases including high-rate charge/discharge cycles with outlier cell voltage measurements. The simulation results reveal that the PST can estimate the SoC with accuracy above 95% without experiencing divergence.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Book
2015-11-09
Technical Paper / Journal Article
2011-04-12
Article
2017-03-13
Technical Paper / Journal Article
2011-04-12
Technical Paper / Journal Article
2010-10-25