Acoustical Methods for Investigating Turbocharger Flow Instabilities

Paper #:
  • 2013-01-1879

Published:
  • 2013-05-13
Citation:
Kabral, R., Rammal, H., and Abom, M., "Acoustical Methods for Investigating Turbocharger Flow Instabilities," SAE Technical Paper 2013-01-1879, 2013, https://doi.org/10.4271/2013-01-1879.
Pages:
6
Abstract:
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them.The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.Here the existence of such amplification will be investigated for a compressor operating at different operating points including points near the surge line. In addition the generated sound for reflection-free conditions is also investigated on both the up- and downstream side. All the measurements have been carried out in the unique CCGEx test rig for two-port testing of turbo-compressors.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$28.00
Mail
$28.00
Members save up to 42% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2011-05-17
Article
2017-07-26
Training / Education
2018-02-20
Training / Education
2018-06-05
Event
2018-04-10
Technical Paper / Journal Article
2011-05-17
Technical Paper / Journal Article
2011-05-17