Browse Publications Technical Papers 2013-01-2287
2013-09-17

Rapid, Tunable Error Detection with Execution Fingerprinting 2013-01-2287

Recently, the combination of semiconductor manufacturing technology scaling and pressure to reduce semiconductor system costs and power consumption has resulted in the development of computer systems responsible for executing a mix of safety-critical and non-critical tasks. However, such systems are poorly utilized if lockstep execution forces all processor cores to execute the same task even when not executing safety-critical tasks. Execution fingerprinting has emerged as an alternative to n-modular redundancy for verifying redundant execution without requiring that all cores execute the same task or even execute redundant tasks concurrently. Fingerprinting takes a bit stream characterizing the execution of a task and compresses it into a single, fixed-width word or fingerprint.
Fingerprinting has several key advantages. First, it reduces redundancy-checking bandwidth by compressing changes to external state into a single, fixed-width word. Second, it reduces error detection latency by capturing and exposing intermediate operations on faulty data. Third, it naturally supports the design of mixed criticality systems by making dual-, triple-, and n-modular redundancy available without requiring significant architectural changes. Fourth, while it can't guarantee perfect error detection, error detection probabilities and latencies can be tuned to a particular application.
In this paper, we describe fingerprinting in safety-critical systems and explore the various trade-offs inherent in fingerprinting subsystem design, including: (a) determining what application data to compress, as a function of error detection probability and latency, and (b) identifying a corresponding fingerprinting circuit implementation. In this context, we present several case studies demonstrating how application characteristics inform fingerprinting subsystem design.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Model-Based and Signal-Based Gearbox Sensor Fault Detection, Identification and Accommodation

2014-01-9025

View Details

TECHNICAL PAPER

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-01-0042

View Details

TECHNICAL PAPER

Reliability of Multi-Sensor Fusion for Next Generation Cars and Trucks

2014-01-0718

View Details

X