Browse Publications Technical Papers 2013-01-2302
2013-09-17

Computational Study of Coanda Adhesion Over Curved Surface 2013-01-2302

This paper presents a set of numerical computations with different turbulence model on an air jet flowing tangentially over the curved surface. It has been realized that jet deflection angle and the corresponding thrust are important parameter to determine with great care. Through the grid independence analysis, it has been found that without resolution of the viscous sub-layer, it is not possible to determine the computationally independent angle of jet deflection and boundary layer thickness. The boundary layer analysis has been performed at different radius of curvature and at jet Reynolds number ranging from approximately about 2400-10,000. The boundary layer thickness has been determined at the verge of separation and found a relation with the radius of curvature and jet Reynolds number. The skin-friction coefficient has been also studied at the verge of separation in relation to the surface radius and jet Reynolds number. In this research work, the inter-relation between flow and geometric parameters has been recognized for the further design of the Coanda nozzle flow. The result presented in this paper can serve as guidelines for the experimental investigation of such type of flow in order to have better insight into the flow.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
X