Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

Paper #:
  • 2013-01-2411

Published:
  • 2013-09-24
Citation:
Yoshida, T., Koizumi, T., Tsujiuchi, N., Jiang, Z. et al., "Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator," SAE Int. J. Commer. Veh. 6(2):429-440, 2013, https://doi.org/10.4271/2013-01-2411.
Pages:
12
Abstract:
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency.Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively. In this simulation, we calculated generative forces and energy consumptions of hydraulic cylinders by solving inverse dynamics of the linkages.Firstly, we used wedge models that enable extremely high-speed calculations, to look for numerous combinations of trajectory parameters and select ones with less energy consumption. Then, we used DEM models that enable detailed analysis by combining with the front linkage models to evaluate digging efficiencies of the selected trajectories. The results show that the trajectories with the highest efficiency generated in this research exceeds the efficiency level of a skilled operator by 6.6%.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2017-02-22
Book
2006-03-02
Book
2002-04-15
Training / Education
2018-07-16
Article
2017-01-03
Training / Education
2018-02-05