Reduced Kinetic Mechanisms for Diesel Spray Combustion Simulations

Paper #:
  • 2013-24-0014

Published:
  • 2013-09-08
DOI:
  • 10.4271/2013-24-0014
Citation:
D'Errico, G., Lucchini, T., Stagni, A., Frassoldati, A. et al., "Reduced Kinetic Mechanisms for Diesel Spray Combustion Simulations," SAE Technical Paper 2013-24-0014, 2013, doi:10.4271/2013-24-0014.
Pages:
14
Abstract:
Detailed chemistry represents a fundamental pre-requisite for a realistic simulation of combustion process in Diesel engines to properly reproduce ignition delay and flame structure (lift-off and soot precursors) in a wide range of operating conditions. In this work, the authors developed reduced mechanisms for n-dodecane starting from the comprehensive kinetic mechanism developed at Politecnico di Milano, well validated and tested in a wide range of operating conditions [1]. An algorithm combining Sensitivity and Flux Analysis was employed for the present skeletal reduction. The size of the mechanisms can be limited to less than 100 species and incorporates the most important details of low-temperature kinetics for a proper prediction of the ignition delay. Furthermore, the high-temperature chemistry is also properly described both in terms of reactivity and species formation, including unsaturated compounds such as acetylene, whose concentration controls soot formation.The consistency between reduced and detailed mechanism was verified in several reference experiments. Then, the mechanism was applied to diesel spray combustion modeling. Simulations were performed by using the Lib-ICE code, entirely developed by the authors and based on OpenFOAM technology. To evaluate the predictive capability of the reduced mechanisms, combustion simulations were performed using the MRIF (Multiple Representative Interactive Flamelets) model. Such model approximates the flame structure as a set of multiple unsteady flamelets and their evolution is computed in the mixture fraction space, where species and energy equations are solved. Experimental data from the Engine Combustion Network Database were used for validation, by comparing computed and experimental data of flame-lift off and ignition delay at different operating conditions.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2011-04-12
Article
2016-09-06
Training / Education
2003-01-22
Training / Education
2009-01-22
Training / Education
2010-07-07
Technical Paper / Journal Article
2010-10-25