Cold Start Thermal Management with Electrically Heated Catalyst: A Way to Lower Fuel Consumption

Paper #:
  • 2013-24-0158

Published:
  • 2013-09-08
Citation:
Presti, M., Pace, L., Poggio, L., and Rossi, V., "Cold Start Thermal Management with Electrically Heated Catalyst: A Way to Lower Fuel Consumption," SAE Technical Paper 2013-24-0158, 2013, https://doi.org/10.4271/2013-24-0158.
Pages:
8
Abstract:
Recent engine development has been mainly driven by increased specific volumetric power and especially by fuel consumption minimization. On the other hand the stringent emission limits require a very fast cold start that can be reached only using tailored catalyst heating strategy.This kind of thermal management is widely used by engine manufactures although it leads to increased fuel consumption. This fuel penalty is usually higher for high power output engines that have a very low load during emission certification cycle leading to very low exhaust gas temperature and, consequently, the need of additional energy to increase the exhaust gas temperature is high.An alternative way to reach a fast light off minimizing fuel consumption increase is the use of an Electrical Heated Catalyst (EHC) that uses mechanical energy from the engine to generate the electrical energy to heat up the catalyst. Following this thermal management strategy the energy input can be tailored according to the component need and the energy loss in the system can be minimized. Moreover, the efficiency of such systems can be further optimized using for example brake energy recuperation or advanced thermal management.The present work describes the different engine management strategies tested by Ferrari to find the best compromise between fuel consumption and emission reduction.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-12-11
Article
2017-03-13
Technical Paper / Journal Article
2013-01-09
Standard
1987-02-01