Experimental Investigation on Three Different Ceramic Substrate Materials for a Diesel Particulate Filter

Paper #:
  • 2013-24-0160

Published:
  • 2013-09-08
DOI:
  • 10.4271/2013-24-0160
Citation:
Andreata, M., Millo, F., Mallamo, F., Mercuri, D. et al., "Experimental Investigation on Three Different Ceramic Substrate Materials for a Diesel Particulate Filter," SAE Technical Paper 2013-24-0160, 2013, doi:10.4271/2013-24-0160.
Pages:
11
Abstract:
Three different ceramic substrate materials (Silicon Carbide, Cordierite and Aluminum Titanate) for a Diesel Particulate Filter (DPF) for a European passenger car diesel engine have been experimentally investigated in this work.The filters were soot loaded under real world operating conditions on the road and then regenerated in two different ways that simulate the urban driving conditions, which are the most severe for DPF regeneration, since the low exhaust flow has a limited capability to absorb the heat generated by the soot combustion.The tests showed higher temperature peaks, at the same soot loading, for Cordierite and Aluminum Titanate compared to the Silicon Carbide, thus leading to a lower soot mass limit, which in turn required for these components a higher regeneration frequency with draw backs in terms of fuel consumption and lube oil dilution. On the other hand Cordierite and Aluminum Titanate could guarantee a lower thermal loss across the DPF, thus allowing the attainment of higher temperature levels and consequently of higher efficiencies of an SCR system placed downstream of the DPF.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2009-01-22
Training / Education
2003-01-22
Training / Education
2017-09-21
Technical Paper / Journal Article
2010-10-25