Browse Publications Technical Papers 2013-32-9083
2013-10-15

Potential of Stratification Charge for Reducing Pressure-Rise Rate in HCCI Engines Based on Multi-Zone Modeling and Experiments by using RCM 2013-32-9083

The charge stratification has been thought as one of the ways to reduce the sharp pressure rises of HCCI combustion. The objective of this study is to evaluate the potential of equivalence ratio, initial temperature, and EGR gas stratifications for reducing pressure-rise rate of HCCI combustion. Using rapid compression machine, the stratified pre-mixture is charged, and compressed to analyze the change of in-cylinder gas pressure and temperature traces during compression process. Based on the experiment results, numerical calculations by CHEMKIN are conducted to more specifically analyze the potential of equivalence ratio, initial temperature, and EGR gas stratifications on the reduction of pressure rise rate. Multi-zone model is used to simulate the thermal stratification, fuel stratification and EGR gas stratification of in-cylinder charge as like real engine. Then, the results from multi-zone model are compared with that from single-zone model to clearly verify the effects of three stratifications on pressure-rise rate. The results from comparison between single-zone model and multi-zone model show that EGR gas stratification was the most effective to disperse ignition timing compared to the thermal stratification and fuel stratification when setting the same time differences of ignition timing shown in single-zone model. Among the three stratifications of in-cylinder charge, fuel stratification was the worst to disperse of ignition timing.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Numerical Study of Effects of Fuel Injection Timings on CAI/HCCI Combustion in a Four-Stroke GDI Engine

2005-01-0144

View Details

TECHNICAL PAPER

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-01-1122

View Details

TECHNICAL PAPER

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-01-0047

View Details

X