Browse Publications Technical Papers 2013-32-9161
2013-10-15

The Intake and Exhaust Pipe Effect on Rotary Engine Performance 2013-32-9161

This article is to investigate the inlet and exit pipe effect on a rotary engine performance. A 1-dimensional, three-cylinder reciprocating engine model was adopted to simulate the operation of a rotary engine with three separate chambers. The chamber volume variation in this model was identical to a real rotary engine. The test data of the real rotary engine were used as a benchmark test for this model. Various parameters are then studied, including pipe length, pipe diameters, and pipe shape with convergent/divergent angles. In the performance analysis, the results showed that the averaged performance data (BSFC, brake work, brake torque, pressure distribution) was within 5 % in tolerance. The results of pipe length variation showed that in a range of short inlet pipe brought higher power (8.4 %). On the contrary, the exhaust pipe had a better work output over a certain length (10%). With a shorter inlet pipe and a longer exhaust pipe, the work output makes about 14.3% higher. The results of pipe diameter variation showed that in a certain range, enlarging pipe diameter gained better work output (14%). The results of pipe shape appeared that convergent inlet pipe at a certain range had a better work output up to 11% more. Divergent exhaust pipe made slight gain in work. Under a specific rotational speed, well-tuning the air pipes in length, shape and diameter would enhance the engine work output 20% more.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Numerical Investigation on the Performance of Rotary Engine with Leakage, Different Fuels and Recess sizes

2013-32-9160

View Details

TECHNICAL PAPER

Liquid Fuel Vaporization Process Built Inside Wankel Rotary Engines

2012-36-0124

View Details

TECHNICAL PAPER

A Novel Wankel Engine Featuring Jet Ignition and Port or Direct Injection for Faster and More Complete Combustion Especially Designed for Gaseous Fuels

2015-01-0007

View Details

X