Electromagnetics, Structural Harmonics and Acoustics Coupled Simulation on the Stator of an Electric Motor

Paper #:
  • 2014-01-0933

Published:
  • 2014-04-01
Citation:
Senousy, M., Larsen, P., and Ding, P., "Electromagnetics, Structural Harmonics and Acoustics Coupled Simulation on the Stator of an Electric Motor," SAE Int. J. Passeng. Cars - Mech. Syst. 7(2):822-828, 2014, https://doi.org/10.4271/2014-01-0933.
Pages:
7
Abstract:
Electric motors and generators produce vibrations and noise associated with many physical mechanisms. In this study, we look at the vibrations and noise produced by the transient electromagnetic forces on the stator of a permanent magnet motor. In the first stage, electromagnetic simulation is carried out to calculate the forces per tooth segment of the stator. The harmonic orders of the electromagnetic forces are then calculated using Fourier analysis, and forces are mapped to the mechanical harmonic analysis of the second stage. As a third stage, the vibrations of the structure are used to drive the boundary of acoustic domain to predict the noise. Finally, optimization studies are made over the complete system to improve the motor design and reduce noise. A simulation environment (ANSYS Workbench) is used to integrate a seamless workflow.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2011-04-12
Technical Paper / Journal Article
2010-09-28