Browse Publications Technical Papers 2014-01-1049
2014-04-01

Effect of Fiber Orientation on the Mechanical Properties of Long Glass Fiber Reinforced (LGFR) Composites 2014-01-1049

Long glass fiber reinforced (LGFR) composites have been widely used in automotive industry to reduce vehicle weight and maintain relatively high mechanical performances. Due to the injection molding process, the distribution of fiber orientations varies at different locations and through the panel thickness, resulting in anisotropic and non-uniform mechanical properties. The current practice of computer modeling of these materials is generally using isotropic properties adjusted by a certain scale factor. The effect of fiber orientation is not carefully considered due to the complexity of fiber orientation distribution in the LGFR parts.
The purpose of this paper is to identify key factors affecting vehicle attribute performances where LGFR composites are used; and provide an efficient way for accurate CAE modeling of LGFR composites. In this study, tensile coupons cut from a simple geometric injection molded plaque are tested. The tested material properties are compared to those from CAE predictions to understand how well the CAE predictions capture the material behavior with fiber orientation accounted for. The fiber orientation is obtained from injection molding simulations and mapped to the CAE model using Abaqus coupled with Digimat to perform micromechanical calculations on material properties. The stiffness of a more complex part at different locations is then compared between physical testing and CAE prediction. Finally the NVH performance of the whole panel is simulated using Abaqus to evaluate the fiber orientation effect.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Virtual Coupon Testing of Carbon Fiber Composites for Application in Structural Analysis

2014-01-0809

View Details

TECHNICAL PAPER

Theoretical Modeling of the Mechanical Degradation of Polymer Composites due to Moisture/Water Absorption and Damage Progression

2019-01-1376

View Details

JOURNAL ARTICLE

Predicting Impact Damage, Residual Strength and Crashworthiness of Composite Structures

2016-01-0497

View Details

X