Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine

Paper #:
  • 2014-01-1141

Published:
  • 2014-04-01
DOI:
  • 10.4271/2014-01-1141
Citation:
Fridriksson, H., Tuner, M., Andersson, O., Sunden, B. et al., "Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine," SAE Technical Paper 2014-01-1141, 2014, doi:10.4271/2014-01-1141.
Pages:
13
Abstract:
Heat transfer losses are one of the largest loss contributions in a modern internal combustion engine. The aim of this study is to evaluate the contribution of the piston bowl type and swirl ratio to heat losses and performance. A commercial CFD tool is used to carry out simulations of four different piston bowl geometries, at three engine loads with two different swirl ratios at each load point. One of the geometries is used as a reference point, where CFD results are validated with engine test data. All other bowl geometries are scaled to the same compression ratio and make use of the same fuel injection, with a variation in the spray target between cases. The results show that the baseline case, which is of a conventional diesel bowl shape, provides the best emission performance, while a more open, tapered, lip-less combustion bowl is the most thermodynamically efficient. The results also show that the response of the flow field, due to swirl variations, is not the same for all piston configurations and, therefore, the effects of swirl on heat transfer are not the same for all piston geometries.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2017-10-03
Technical Paper / Journal Article
2010-10-25
Training / Education
2010-07-07
Training / Education
2009-12-15
Training / Education
2011-04-12