Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

Paper #:
  • 2014-01-1182

Published:
  • 2014-04-01
Citation:
Gingrich, E., Ghandhi, J., and Reitz, R., "Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes," SAE Int. J. Engines 7(1):375-386, 2014, https://doi.org/10.4271/2014-01-1182.
Pages:
12
Abstract:
An experimental study has been conducted to provide insight into heat transfer to the piston of a light-duty single-cylinder research engine under Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion regimes. Two fast-response surface thermocouples embedded in the piston top measured transient temperature. A commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. A detailed comparison was made between the different combustion regimes at a range of engine speed and load conditions. The closed-cycle integrated and peak heat transfer rates were found to be lower for HCCI and RCCI when compared to CDC. Under HCCI operation, the peak heat transfer rate showed sensitivity to the 50% burn location.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Book
2009-10-08
Technical Paper / Journal Article
2010-10-25
Technical Paper / Journal Article
2011-04-12
Training / Education
2018-05-07
Technical Paper / Journal Article
2010-04-12