Potential of a Variable Compression Ratio Gasoline SI Engine with Very High Expansion Ratio and Variable Valve Actuation

Paper #:
  • 2014-01-1201

Published:
  • 2014-04-01
Citation:
Ferrey, P., Miehe, Y., Constensou, C., and Collee, V., "Potential of a Variable Compression Ratio Gasoline SI Engine with Very High Expansion Ratio and Variable Valve Actuation," SAE Int. J. Engines 7(1):468-487, 2014, https://doi.org/10.4271/2014-01-1201.
Pages:
20
Abstract:
Combustion simulations and single cylinder engine tests show a clear potential when coupling the Variable Compression Ratio (VCR) engine with the Variable Valve Actuation (VVA) technologies.Simulations demonstrate the thermodynamic benefit from increasing the geometric Compression Ratio (CR>18:1) in combination with VVA compared to VVT strategies, thanks to the use of Atkinson / Miller Cycles. 3D combustion simulations of high compression ratio combustion chamber geometries used with Early or Late Intake Valve Closing strategies have been carried out with IFP-C3D™. They show an indicated efficiency increase up to 12 or 13% between compression ratio 10:1 and 18-20:1 at low loads (BMEP < 8 bar).Single cylinder engine tests have been performed with specific combustion chambers up to CR 23:1 and have confirmed the simulation results.0D GT-POWER™ simulations have been correlated to the engine tests and used to extrapolate them to a 3 cylinders 1.1L TGDI VCR-VVA engine, for both EIVC and LIVC intake valve lift strategies.Finally, simulations and tests show correlated thermodynamic benefits of the association of VCR and VVA, improving fuel consumption on driving cycles between 8 and 11% compared to a 10.5:1 fixed compression ratio engine equipped with 2 VVT. Combining the VCR and VVA optimizes each potential far more than when separated (alone). Furthermore, the fuel consumption benefit is robust through driving cycles and downsizing level.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2018-02-05
Technical Paper / Journal Article
2010-10-25
Training / Education
2017-12-18
Article
2017-03-13