Browse Publications Technical Papers 2014-01-1202
2014-04-01

Study of the Combustion and Emission Characteristics of a Quasi ICRC Engine Under Different Engine Loads 2014-01-1202

A novel reciprocating engine version of oxy-fuel combustion cycle combined with water direct injection (known as internal combustion rankine cycle) is presented in this paper. Water is injected near top dead center to control the reaction rate of the oxy-fuel mixture, as well as the peak in-cylinder temperature. The evaporation of the water mist will increase the mass of working gas inside the cylinder, and enhances the thermo efficiency and MEP. Moreover, the injected water is heated up through heat exchangers by both engine coolant and exhaust gas, and the waste heat is effectively recovered this way.
This study investigates the combustion and emission characteristics of ICRC under different engine loads based on a single-cylinder, air-cooled SI engine fueled with propane. An extra diesel injector is employed to inject water with high injection temperature (160°C).
Results show that the water injection process is able to increase the indicated work up to 27%, and the indicated thermo efficiency is improved by 7.8% under higher engine load. However, the same amount of injected water will decrease cycle performances when engine load is lower, mainly because the water injection process has stronger negative effects on the combustion process when the reaction rate of the oxy-fuel mixture and the in-cylinder pressure is lower. HC emissions are notable under lower engine load, but decrease significantly with the increase of the engine load. NOx emission increases slightly with the increase of the engine load, but stay under 20ppm.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Operational Characteristics of Oxygenate-Water Fuel Blends Studied in an Optical DI Diesel Engine with Simulated Exhaust Gas Recirculation

2007-01-2017

View Details

TECHNICAL PAPER

Multi-Objective Optimization of Fuel Consumption and NOx Emissions with Reliability Analysis Using a Stochastic Reactor Model

2019-01-1173

View Details

TECHNICAL PAPER

Operating Characteristics of DME-Gasoline Dual-fuel in a Compression Ignition Engine at the Low Load Condition

2013-01-0049

View Details

X