Browse Publications Technical Papers 2014-01-1214
2014-04-01

A Comprehensive Simulation Approach to Irregular Combustion 2014-01-1214

The combustion of highly boosted gasoline engines is limited by knocking combustion and pre-ignition. Therefore, a comprehensive modelling approach consisting of cycle-to-cycle simulation, reactor modelling with detailed chemistry and CFD-simulation was used to predict the knock initiation and to identify the source of pre-ignition. A 4-cylinder DISI test engine was set up and operated at low engine speeds and high boost pressures in order to verify the accuracy of the numerical approach.
The investigations showed that there is a correlation between the knocking combustion and the very first combustion phase. The onset of knock was simulated with a stochastic reactor model and detailed chemistry. In parallel, measurements with an optical spark plug were carried out in order to identify the location of knock onset. The simulation results were in good agreement with the measurements.
Deposits and oil/fuel-droplets are possible triggers of pre-ignition. A multi-component fuel approach was therefore introduced to predict the wall film formation with the CFD-simulation. Droplet-stripping from the wall film was evaluated. The simulation of the chemistry of the oil/fuel droplets confirmed the results from high-speed imaging that identified droplets and deposits as a possible source of pre-ignition.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Lubricant Induced Pre-Ignition in an Optical SI Engine

2014-01-1222

View Details

TECHNICAL PAPER

The Effect of Oil Intrusion on Super Knock in Gasoline Engine

2014-01-1224

View Details

TECHNICAL PAPER

A RANS CFD 3D Methodology for the Evaluation of the Effects of Cycle By Cycle Variation on Knock Tendency of a High Performance Spark Ignition Engine

2014-01-1223

View Details

X