Browse Publications Technical Papers 2014-01-1246
2014-04-01

Compression Ignition 6-Stroke Cycle Investigations 2014-01-1246

Driven by the desire to implement low-cost, high-efficiency NOx aftertreatment systems, such as Three Way Catalysts (TWC) or Lean NOx Traps (LNT), a novel 6-Stroke engine cycle was explored to determine the feasibility of implementing such a cycle on a compression ignition engine while continuing to deliver fuel efficiency. Fundamental questions regarding the abilities and trade-offs of a 6-stroke engine cycle were investigated for near-stoichiometric and lean operation. Experiments were performed on a single-cylinder 15-liter (equivalent) research engine equipped with flexible valvetrain and fuel injection systems to allow direct comparison between 4-stroke and 6-stroke performance across multiple hardware configurations. 1-D engine simulations with predictive combustion models were used to support, iterate on, and explore the 6-stroke operation in conjunction with the experiments. Output from the experiments and simulations were then used to perform Availability and Energy balances for a thermodynamic comparison of the two cycles.
Compared to 4-stroke cycle operation, the 6-stroke cycle exhibited lower PM emissions at stoichiometric operation, while higher NOx/PM emissions were observed under some lean conditions. The ratio of fuel burned in the first combustion event to the second event had a strong impact on performance, heat loss, and emissions. For some 6-stroke strategies engine breathing and airflow management were found to be challenging, and beneficial for other strategies. The thermodynamic analysis showed that under similar boundary conditions, the 6-stroke and 4-stroke engine cycles could attain very similar brake efficiencies, though the detailed availability balance breakdown could differ substantially.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Drive Cycle Fuel Economy and Engine-Out Emissions Evaluation Using an Opposed-Piston Sleeve-Valve Engine with Lean Operation and Ignition Delay for NOx Control

2013-32-9064

View Details

TECHNICAL PAPER

The Development of a NOx Reduction System during the Fuel Cut Period for Gasoline Vehicles

2019-01-1292

View Details

TECHNICAL PAPER

Evaluation of a Non-Thermal Plasma System for Remediation of NOx in Diesel Exhaust

1999-01-3639

View Details

X