Browse Publications Technical Papers 2014-01-1255
2014-04-01

In-Cylinder Mechanisms of Soot Reduction by Close-Coupled Post-Injections as Revealed by Imaging of Soot Luminosity and Planar Laser-Induced Soot Incandescence in a Heavy-Duty Diesel Engine 2014-01-1255

Post injections have been shown to reduce engine-out soot emissions in a variety of engine architectures and at a range of operating points. In this study, measurements of the engine-out soot from a heavy-duty optical diesel engine have conclusively shown that interaction between the post-injection jet and soot from the main injection must be, at least in part, responsible for the reduction in engine-out soot. Extensive measurements of the spatial and temporal evolution of soot using high-speed imaging of soot natural luminosity (soot-NL) and planar-laser induced incandescence of soot (soot-PLII) at four vertical elevations in the piston bowl at a range of crank angle timings provide definitive optical evidence of these interactions.
The soot-PLII images provide some of the most conclusive evidence to date that the addition of a post injection dramatically changes the topology and quantity of in-cylinder soot. As the post jet penetrates toward the bowl wall, it carves out regions from the main-injection soot structures, either through displacement of the soot or through rapid and progressive oxidation of the soot. Later in the cycle, the regions of main-injection soot on either side of the jet centerline, clearly present in the main-injection-only case, have all but disappeared when the post-injection is added - only the soot in the post-injection pathway remains. Evidence of this apparent late-cycle oxidation of main-injection soot appears in both the soot-PLII and soot-NL images, providing substantial support for the mixing mechanism of soot reduction with post injections. Implications of these findings and future work are also discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Comprehensive Assessment of Soot Particles from Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Engine

2015-01-0809

View Details

TECHNICAL PAPER

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-01-0697

View Details

JOURNAL ARTICLE

Effects of End-of-Injection Transients on Combustion Recession in Diesel Sprays

2016-01-0745

View Details

X