Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas

Paper #:
  • 2014-01-1318

Published:
  • 2014-04-01
DOI:
  • 10.4271/2014-01-1318
Citation:
Doosje, E., Willems, F., and Baert, R., "Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas," SAE Technical Paper 2014-01-1318, 2014, https://doi.org/10.4271/2014-01-1318.
Pages:
11
Abstract:
Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as low-cetane fuel. Limited results have been published using natural gas as low-cetane fuel; especially full scale engine results. This study presents results from an experimental study of diesel-CNG RCCI operation on a 6 cylinder, 8 l heavy duty engine with cooled EGR. This standard Tier4f diesel engine was equipped with a gas injection system, which used single point injection and mixed the gaseous fuel with air upstream of the intake manifold. For this engine configuration, RCCI operating limits have been explored. In the 1200-1800 rpm range, RCCI operation with Euro-VI engine out NOx and soot emissions was achieved between 2 and 9 bar BMEP without EGR. Corresponding hydrocarbon levels were high, but exhaust temperature levels hold promise for a suitable reduction through catalytic aftertreatment. Thermal efficiency was comparable to or better than diesel operation. In the load ranges tested, gas Methane Number (MN) variations between 70 and 100 have only a small effect on RCCI performance.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2009-01-22
Training / Education
2009-12-15
Training / Education
1999-09-27