Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas

Paper #:
  • 2014-01-1321

Published:
  • 2014-04-01
Citation:
Zoldak, P., Sobiesiak, A., Bergin, M., and Wickman, D., "Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas," SAE Technical Paper 2014-01-1321, 2014, https://doi.org/10.4271/2014-01-1321.
Pages:
10
Abstract:
Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties that are injected at different times to generate a spatial gradient of fuel-air mixtures and reactivity. Researchers have shown that RCCI offers improved fuel efficiency and lower NOx and Soot exhaust emissions when compared to conventional diesel diffusion combustion. The majority of previous research work has been focused on premixed gasoline or ethanol for the low reactivity fuel and diesel for the high reactivity fuel.The increased availability of natural gas (NG) in the U.S. has renewed interest in the application of compressed natural gas (CNG) to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Thus, RCCI using CNG and diesel fuel warrants consideration. A computational study was performed on a 15L HD diesel engine to examine trade-offs of pollutant emissions, fuel consumption, peak cylinder pressure and maximum cylinder pressure rise rate. The results from the model indicated that an RCCI combustion strategy had the potential of 17.5% NOx reduction, 78% soot reduction and a 24% decrease in fuel consumption when compared to a conventional diesel combustion strategy using the same air-fuel ratio (AFR) and exhaust gas recirculation (EGR) rate, at the rated power operating condition. This was attained while meeting peak cylinder pressure and maximum cylinder pressure rise rate constraints.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$28.00
Mail
$28.00
Members save up to 42% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
1990-02-01
Article
2017-07-26
Technical Paper / Journal Article
1990-02-01
Training / Education
2009-12-15
Training / Education
2018-03-26
Technical Paper / Journal Article
1990-02-01