Methods of Evaluating and Mitigating NVH when Operating an Engine in Dynamic Skip Fire

Paper #:
  • 2014-01-1675

Published:
  • 2014-04-01
DOI:
  • 10.4271/2014-01-1675
Citation:
Serrano, J., Routledge, G., Lo, N., Shost, M. et al., "Methods of Evaluating and Mitigating NVH when Operating an Engine in Dynamic Skip Fire," SAE Int. J. Engines 7(3):1489-1501, 2014, doi:10.4271/2014-01-1675.
Pages:
13
Abstract:
Cylinder deactivation is a technology seeing increased automotive deployment in light of more demanding fuel economy and emissions requirements. Examples of current production systems include GM's Active Fuel Management and Chrysler's Multi-Displacement System, both of which provide one fixed level of deactivation. Dynamic Skip Fire (DSF), in which the number of fired cylinders is continuously varied to match the torque demand, offers significantly increased fuel savings over a wider operating range than the current production systems. One of the biggest challenges in implementing cylinder deactivation is developing strategies to provide acceptable Noise, Vibration and Harshness (NVH); this paper discusses those challenges and the methodologies developed. This work covers theoretical root causes; proposed metrics to quantify the NVH level; algorithmic and physical mitigation methods; and both subjective and objective evaluation results.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2004-11-16
Training / Education
2011-04-12