An Optimal Regenerative Braking Energy Recovery System for Two-Speed Dual Clutch Transmission-Based Electric Vehicles

Paper #:
  • 2014-01-1740

Published:
  • 2014-04-01
DOI:
  • 10.4271/2014-01-1740
Citation:
Ruan, J. and Walker, P., "An Optimal Regenerative Braking Energy Recovery System for Two-Speed Dual Clutch Transmission-Based Electric Vehicles," SAE Technical Paper 2014-01-1740, 2014, https://doi.org/10.4271/2014-01-1740.
Pages:
8
Abstract:
Regenerative braking energy recovery bears significance in extending the driving mileage of electric vehicles (EVs) while fulfilling real-time braking demands. Braking energy strategy plays a significant role in improving the regenerative braking performance and ensuring braking safety. This paper presents a regenerative braking energy recovery strategy for an example EV with a two-speed Dual Clutch Transmission (DCT). The two-speed DCT, with simple structure, can effectively extend the active vehicle speed-range for regenerative braking. Meanwhile, a shifting strategy is proposed for the DCT, working with the presented braking energy recovery strategy, to optimize the brake force distribution between front and rear wheels, motor and friction brake force. The EVs' model with the proposed regenerative braking strategy and the optimal shifting schedule was established and implemented in Matlab/Simulink. A testing rig based on an example EV was then set up in our laboratory to experimentally validate the proposed strategy. The simulation and experimental results show significant agreement. It verified that the proposed regenerative braking control strategy could not only exhibit excellent performance, but also make it possible to recover more braking energy though adding the two-speed DCT.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-11-15
Training / Education
2017-12-04
Training / Education
2005-11-15