Compact, Safe and Efficient Wireless and Inductive Charging for Plug-In Hybrids and Electric Vehicles

Paper #:
  • 2014-01-1892

Published:
  • 2014-04-01
DOI:
  • 10.4271/2014-01-1892
Citation:
Turki, F., Körner, A., Tlatlik, J., and Brown, A., "Compact, Safe and Efficient Wireless and Inductive Charging for Plug-In Hybrids and Electric Vehicles," SAE Int. J. Alt. Power. 3(1):139-151, 2014, doi:10.4271/2014-01-1892.
Pages:
13
Abstract:
Conventional charging systems for electric and plug-in hybrid vehicles currently use cables to connect to the grid. This methodology creates several disadvantages, including tampering, risk, depreciation and non-value added user efforts. Loose or faulty cables may also create a safety issue. Wireless charging for electric vehicles delivers both a simple, reliable and safe charging process. The system enhances consumer adoption and promotes the integration of electric vehicles into the automotive market. Increased access to the grid enables a higher level of flexibility for storage management, increasing battery longevity.The power class of 3.7kW or less is an optimal choice for global standardization and implementation, due to the readily available power installations for potential customers throughout the world. One of the key features for wireless battery chargers are the inexpensive system costs, reduced content and light weight, easing vehicle integration.This paper demonstrates a wireless charging design with minimal component content. It includes a car pickup coil with 300 mm side length and low volume and mass 1.5 dm3 power interface electronics. After an overview of its hardware requirements, power transfer and efficiency benefits are presented, providing the anticipated horizontal and lateral deviations.An intense magnetic field is required to transfer the target power at low volumes between the transfer units. This field heats up any metal object over the transfer coil, similar to an induction oven. Consequently, the system should be powered down whenever a metal object is detected in this area. A Foreign Object Detection (FOD) design has been developed to continuously monitor the critical high field area. Device testing results are also provided.Field characteristics are verified alongside the vehicle, ensuring system safety for living beings; compliant with all applicable standards reference limits which is more challenging than the basic limits [13].
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Article
2016-09-06
Technical Paper / Journal Article
2010-04-12