Browse Publications Technical Papers 2014-01-2337
2014-09-30

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow 2014-01-2337

This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
The investigation showed that a more inclined heat exchanger resulted in lower static pressure drop and at the same time achieved a higher heat transfer rate, for a specific mass airflow rate. This result was obtained for all three heat exchangers. When analysing the parameters at the same core speed it was seen that the static pressure drop was increased for the 10° and the 30° angled heat exchangers, compared to the 90° configuration. For the 60° cases the pressure drop was both increased and decreased compared to the 90° cases, depending on the heat exchanger design. It was also seen that the pressure drop and the heat transfer rate variation were negligible between the downflow and crossflow orientation of the heat exchanger. When defining the static pressure drop to 200Pa either a 19mm thick heat exchanger at 60° or a 52mm heat exchanger at 90° can be used to obtain the same heat transfer rate.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Filtration of Coolants for Heavy Duty Engines

881270

View Details

TECHNICAL PAPER

Thermal Design of Compact Circular External Water Cooled Engine Oil Cooler

961812

View Details

TECHNICAL PAPER

SENSITIVITY/UNCERTAINTY ANALYSIS OF AUTOMOTIVE HEAT EXCHANGER DESIGNS

2001-01-1013

View Details

X