Browse Publications Technical Papers 2014-01-2493
2014-09-28

CFD-CAE Multi-Physics Simulation Approach for Brake Disc Thermal Coning 2014-01-2493

The brake system and components are essential active safety systems for users of motor vehicles, one common NVH phenomenon known as Brake Disc Thermal Coning creates a perception of poor braking system performance.
Although Brake Disc Thermal Coning does not deteriorate the braking distance or the vehicle performance, is a concern for the customer who identifies any undesired vibration as a potential performance loss resulting in complaints and warranty claims.
In order to increase the quality, and reliability of the products, Automotive OEMs have created processes and tests, today incorporating the ones based in computational solutions, to identify, prevent and correct potential issues before its present in the final product.
As computer technologies like Computer Aided Design (CAD), Computer Aided Engineering (CAE) and Computer Aided Manufacturing (CAM) have become more robust, and PC power clusters have increased the complexity of the problems resolution and decreasing the solver processing time, OEMs are moving forward from the road, to the lab and today to CAE.
This paper describes a methodology developed using tools as Computational Fluid Dynamics (CFD) and CAE methods mixed into a multi-physics approach simulation to predict Brake Disc Thermal Coning caused by rotor thermal distortion and transferred into the knuckle as vibration during the braking operation in order to assess the sensitivity of the brake system to thermal distortion.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Heat Transfer Analysis in a Usual Ventilated Brake Disc

2015-36-0019

View Details

TECHNICAL PAPER

Modeling the Cooling Characteristics of a Disk Brake on an Inertia Dynamometer, Using Combined Fluid Flow and Thermal Simulation

2009-01-0861

View Details

JOURNAL ARTICLE

Methodology for Sizing and Validating Life of Brake Pads Analytically

2014-01-2495

View Details

X