Browse Publications Technical Papers 2014-01-2549
2014-10-13

Investigation of Cylinder Deactivation (CDA) Strategies on Part Load Conditions 2014-01-2549

Many efforts have been invested to improve the fuel efficiency of vehicles mainly for the local consumers. One of the main techniques to have better fuel efficiency is cylinder deactivation system. In this paper, the main research area is focus on the investigation of cylinder deactivation (CDA) technology on common engine part load conditions within common Malaysian driving condition. CDA mostly being applied on multi cylinders engines. It has the advantage in improving fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6 liter four cylinders gasoline engine is studied. One-dimensional (1-D) engine modeling is performed to investigate the effect of intake and exhaust valve strategy on engine performance with CDA. The 1-D engine model is constructed starts from the air-box cleaner up to exhaust system according to the 1.6 liter actual engine geometries. The model is simulated at various engine speeds with full load condition. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the effect of valves timing configurations on engine performance. The model is then used to determine the optimum intake and exhaust valve lift and timing for CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effects of valves strategies are very significant on the engine performance. Pumping losses is found to be reduced, thus improving fuel consumption and engine thermal efficiency.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Heavy-Duty Diesel Combustion Optimization Using Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-01-0716

View Details

JOURNAL ARTICLE

Development and Optimization of the Ford 3.5L V6 EcoBoost Combustion System

2009-01-1494

View Details

TECHNICAL PAPER

Development Process to Optimize Design and Performance of Small Gasoline Engines

2007-32-0093

View Details

X