The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs

Paper #:
  • 2014-22-0008

Published:
  • 2014-11-10
Pages:
15
Abstract:
In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur.This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome.In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11m/s) plus 2 tests at 9 m/s.Autopsies were performed on the lower limbs and an injury assessment was established.The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2004-10-18
Technical Paper / Journal Article
2004-03-08
Article
2017-03-13
Technical Paper / Journal Article
2004-03-08
Technical Paper / Journal Article
2004-03-08