Browse Publications Technical Papers 2014-32-0088
2014-11-11

Torque Vectoring of a Formula SAE through Semi Active Differential Control 2014-32-0088

In a Formula SAE car, as for almost all racecars, suppressing or limiting the action of the differential mechanism is the technique mostly adopted to improve the traction exiting the high lateral acceleration corners.
The common Limited Slip Differentials (LSDs) unbalance the traction torque distribution, generating as a secondary effect a yaw torque on the vehicle. If this feature is electronically controlled, these devices can be used to manage the attitude of the car.
The yaw torque introduced by an electronically controlled LSD (which can also be called SAD, “Semi-Active Differential”) could suddenly change from oversteering (i.e. pro-yaw) to understeering (i.e. anti-yaw), depending on the driving conditions. Therefore, controlling the vehicle attitude with a SAD could be challenging, and its effectiveness could be low if compared with the common torque vectoring systems, which act on the brake system of the car. In addition, unlike common ESC (“Electronic Stability Control”) systems do, a SAD can modify the vehicle attitude without limiting its traction performance, which is a crucial factor for racecars.
This paper shows the SAD designed at the University of Florence, highlighting its technical features and discussing its torque vectoring capabilities through the results of the simulation performed with a numerical vehicle model. These results show that this system is capable of improving the performance of the vehicle, in terms of both vehicle stability and traction.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of an AWD Coupling and Controls for a High Performance Sports Car

2007-01-0661

View Details

TECHNICAL PAPER

An All Wheel Drive System Utilizing Twin Hydraulic Couplings with Gerodisc System

973235

View Details

TECHNICAL PAPER

Tire Induced Steering Pull

750406

View Details

X