Browse Publications Technical Papers 2014-32-0099
2014-11-11

Two Small Prototype Engines Developed based on Pulsed Supermulti-Jets Colliding: Having a Potential of Thermal Efficiency Over 60% with Satisfactory Strength of Structure 2014-32-0099

In our previous reports based on computations and fluid dynamic theory, we proposed a new compressive combustion principle for an inexpensive and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% even for small combustion chambers having less than 100 cc. This can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center. We originally developed two small prototype engine systems for gasoline. First one with one rotary valve for pulsating intake flow and sixteen nozzles of jets colliding has no pistons. Next, we developed the second one having a strongly-asymmetric double piston system with the supermulti-jets colliding, although there are no poppet valves. The second prototype engine can vary point-compression strength due to the supermulti-jets and homogeneous compression level due to piston, by changing phase and size of two gears. A motoring test done for evaluating the strength of structure shows that this engine stably works over 4000rpm. Experimental data of combustion with a starter motor indicates a possibility of stable engine start for gasoline without any plugs and thermal efficiency of the order of traditional piston engines or a little more.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Investigation in the Noise from Main Running Gear, Timing Gears and Injection Pump of DI Diesel Engines

900012

View Details

TECHNICAL PAPER

In-Cylinder Charge Homogeneity During Cold-Start Studied with Fluorescent Tracers Simulating Different Fuel Distillation Temperatures

950106

View Details

TECHNICAL PAPER

Investigation of the Effects of Heat Transfer and Thermophysical Properties on Dynamics of Droplet-Wall Interaction

2019-01-0296

View Details

X