Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-by-Wire Vehicles

Paper #:
  • 2015-01-0321

Published:
  • 2015-04-14
Citation:
Song, P., Zong, C., and Tomizuka, M., "Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-by-Wire Vehicles," SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8(2):419-424, 2015, https://doi.org/10.4271/2015-01-0321.
Pages:
6
Abstract:
This paper presents a simultaneous longitudinal and lateral motion control strategy for a full drive-by-wire autonomous vehicle. A nonlinear model predictive control (NMPC) problem is formulated in which the nonlinear prediction model utilizes a spatial transformation to derive the dynamics of the vehicle about the reference trajectory, which facilitates the acquisition of the tracking errors at varying speeds. A reference speed profile generator is adopted by taking account of the road geometry information, such that the lateral stability is guaranteed and the lane guidance performance is improved. Finally, the nonlinear multi-variable optimization problem is simplified by considering only three motion control efforts, which are strictly confined within a convex set and are readily distributed to the four tires of a full drive-by-wire vehicle. Simulation results demonstrate the capability of the proposed controller to follow the reference trajectory while adjusting the vehicle speed automatically.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Book
2015-06-01
Standard
2012-03-15
Book
2009-03-01
Article
2017-03-13
Training / Education
2018-02-26
Standard
2006-09-12