Recursive Estimation of Vehicle Inertial Parameters Using Polynomial Chaos Theory via Vehicle Handling Model

Paper #:
  • 2015-01-0433

Published:
  • 2015-04-14
DOI:
  • 10.4271/2015-01-0433
Citation:
Ma, Z., Yang, J., Jiang, M., and Zhang, Y., "Recursive Estimation of Vehicle Inertial Parameters Using Polynomial Chaos Theory via Vehicle Handling Model," SAE Technical Paper 2015-01-0433, 2015, doi:10.4271/2015-01-0433.
Pages:
6
Abstract:
A new recursive method is presented for real-time estimating the inertia parameters of a vehicle using the well-known Two-Degree-of- Freedom (2DOF) bicycle car model. The parameter estimation is built on the framework of polynomial chaos theory and maximum likelihood estimation. Then the most likely value of both the mass and yaw mass moment of inertia can be obtained based on the numerical simulations of yaw velocity by Newton method. To improve the estimation accuracy, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process. The results of the simulation study suggest that the proposed method can provide quick convergence speed and accurate outputs together with less sensitivity to tuning the initial values of the unidentified parameters.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2010-10-25
Technical Paper / Journal Article
2010-09-28
Technical Paper / Journal Article
2010-10-19