Browse Publications Technical Papers 2015-01-0582
2015-04-14

Design For Six Sigma (DFSS) for Optimization of Stamping Simulation Parameters to Improve Springback Prediction 2015-01-0582

Springback prediction for stamped components is a challenging task for Automotive Industry. Automotive Manufacturers are working to reduce the springback effect of sheet metal stampings caused due to elastic behavior of materials with the help of changes to manufacturing process and part geometry. Recent development in Finite Element Analysis (FEA) studies made it possible for the industry to rely on stamping simulation. There is always a gap between the springback predicted from stamping simulation and the actual stamped part. Currently FEA techniques are trying to close this gap. The objective of this study is to minimize this gap using DFSS method for predicting the springback and optimizing the simulation parameters with the help of LS-Dyna FEM tool. The behavior of material with different simulation parameters has been studied in this paper and the ones that best correlate with actual data are identified. The amount of springback is virtually measured for the stamped part with and without clamping on checking fixture. The results of the baseline simulation before and after optimization are discussed in this paper.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Springback Study on a Stamped Fender Outer

2003-01-0685

View Details

TECHNICAL PAPER

Virtual Simulation of Hood Slam Test

2011-26-0010

View Details

JOURNAL ARTICLE

Strength Analysis of CFRP Composite Material Considering Inter-Laminar Fractures

2015-01-0694

View Details

X