The Depth Limits of Eddy Current Testing for Defects: A Computational Investigation and Smooth-Shaped Defect Synthesis from Finite Element Optimization

Paper #:
  • 2015-01-0595

Published:
  • 2015-04-14
Citation:
Mathialakan, T., Karthik, V., Jayakumar, P., Thyagarajan, R. et al., "The Depth Limits of Eddy Current Testing for Defects: A Computational Investigation and Smooth-Shaped Defect Synthesis from Finite Element Optimization," SAE Int. J. Mater. Manf. 8(2):450-457, 2015, https://doi.org/10.4271/2015-01-0595.
Pages:
8
Abstract:
This paper presents a computational investigation of the validity of eddy current testing (ECT) for defects embedded in steel using parametrically designed defects. Of particular focus is the depths at which defects can be detected through ECT. Building on this we characterize interior defects by parametrically describing them and then examining the response fields through measurement. Thereby we seek to establish the depth and direction of detectable cracks. As a second step, we match measurements from eddy current excitations to computed fields through finite element optimization. This develops further our previously presented methods of defect characterization. Here rough contours of synthesized shapes are avoided by a novel scheme of averaging neighbor heights rather than using complex Bézier curves, constraints and such like. This avoids the jagged shapes corresponding to mathematically correct but unrealistic synthesized shapes in design and nondestructive evaluation.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Training / Education
2017-01-20
Technical Paper / Journal Article
2010-04-12
Training / Education
2013-04-09
Training / Education
2013-04-09
Training / Education
2013-04-09