Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine

Paper #:
  • 2015-01-0779

Published:
  • 2015-04-14
DOI:
  • 10.4271/2015-01-0779
Citation:
Gentz, G., Thelen, B., Litke, P., Hoke, J. et al., "Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine," SAE Int. J. Engines 8(2):538-546, 2015, doi:10.4271/2015-01-0779.
Pages:
9
Abstract:
Turbulent jet ignition is a pre-chamber ignition enhancement method that produces a distributed ignition source through the use of a chemically active turbulent jet which can replace the spark plug in a conventional spark ignition engine. In this paper combustion visualization and characterization was performed for the combustion of a premixed propane/air mixture initiated by a pre-chamber turbulent jet ignition system with no auxiliary fuel injection, in a rapid compression machine. Three different single orifice nozzles with orifice diameters of 1.5 mm, 2 mm, and 3 mm were tested for the turbulent jet igniter pre-chamber over a range of air to fuel ratios. The performance of the turbulent jet ignition system based on nozzle orifice diameter was characterized by considering both the 0-10 % and the 10-90 % burn durations of the pressure rise due to combustion. It was found that the 1.5 mm orifice exhibited the shortest 0-10 % burn duration, which corresponded to the fastest flame initiation. The orifice diameter did not significantly affect the 10-90 % burn duration near stoichiometric air to fuel ratios. In addition to the experimental results, further insight into the combustion process was obtained by performing computational fluid dynamic modeling, which showed similar flame propagation and jet structure.
Access
Now
SAE MOBILUS Subscriber? You may already have access.
Buy
Select
Price
List
Download
$27.00
Mail
$27.00
Members save up to 40% off list price.
Share
HTML for Linking to Page
Page URL

Related Items

Technical Paper / Journal Article
2003-10-27
Technical Paper / Journal Article
2004-01-16
Standard
2014-08-11
Standard
2014-08-12