Browse Publications Technical Papers 2015-01-0807
2015-04-14

Development of Chemical Kinetic Mechanism for Dimethyl Ether (DME) with Comprehensive Polycyclic Aromatic Hydrocarbon (PAH) and NO x Chemistry 2015-01-0807

Dimethyl ether (DME) appears to be an attractive alternative to common fossil fuels in compression ignition engines due to its smokeless combustion and fast mixture formation. However, in order to fully understand the complex combustion process of DME, there is still a remaining need to develop a comprehensive chemical kinetic mechanism that includes both soot and NOx chemistry. In this study, a detailed DME mechanism with 305 species is developed from the basic DME mechanism of Curran et al. (2000) with addition of soot and NOx chemistry from Howard's mechanism et al. (1999), and GRI 3.0 mechanism, respectively. Soot chemistry in Howard mechanism consisting hydrogen abstraction acetylene addition (HACA) and growth of small polycyclic aromatic hydrocarbons (PAH), assesses over a wide range of temperature and is able to predict good to fair the formation of PAH up to coronene. The comparison of ignition delay of the developed DME mechanism with results from shock-tube experiment by Pfahl et al. (1999) shows good agreement over all temperature ranges. Soot and NO formation region from the developed mechanism was also described using closed homogeneous reactor with 2 ms resident time. Here, DME reaction was discussed in terms of soot and NO formation regions over a wide range of temperature and equivalence ratio with comparison to n-heptane (diesel surrogate). Secondly, for time efficient computation, the skeletal mechanism was reduced using Path Flux Analysis (PFA) method by considering important species and reactions of higher order generations of selected species, while the other reduction methods such as Direct Relation Graph (DRG) only considers first generation. The reduced mechanism shows good accuracy with other published mechanisms.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

An Experimental Investigation on a Diesel Engine with Hydrogen Fuel Injection in Intake Manifold

2008-01-1784

View Details

TECHNICAL PAPER

The Effect of Oxygenates on Diesel Engine Particulate Matter

2002-01-1705

View Details

TECHNICAL PAPER

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-01-0259

View Details

X